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Abstract:  

Survival analysis is a crucial statistical field used to analyse the time until an event of interest occurs, 

often applied in medical research, engineering, and social sciences. This study explores and compares 

multiple advanced statistical methodologies for analysing survival data, including non-parametric, 

semi-parametric, Weibull smoothing, fuzzy, and bootstrapping techniques, highlighting their 

theoretical underpinnings, practical applications, and comparative effectiveness. Non-parametric 

methods, such as the Kaplan-Meier estimator, provide a flexible approach without assuming a specific 

distribution. Semi-parametric models, notably the Cox proportional hazards model, offer a balance by 

incorporating covariates without specifying the baseline hazard. Weibull smoothing adds parametric 

flexibility, accommodating different hazard shapes. Fuzzy methods introduce a novel perspective by 

handling imprecision and uncertainty in survival data. Bootstrapping enhances the robustness of our 

estimates through resampling techniques. By integrating these diverse approaches, for the Diabetic 

retinopathy patient and observed the importance of these techniques and identified the applications of 

the Bootstrap to Survival Analysis. 
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INTRODUCTION 

Non-parametric methods in survival analysis are commonly used for their flexibility and 

minimal assumptions. The Kaplan-Meier estimator remains a cornerstone for estimating survival 

functions. Recent studies have focused on improving its computational efficiency and extending its 

applications. For instance, recent advancements involve integrating Kaplan-Meier with machine 

learning algorithms to enhance predictive performance in large datasets (Wang et al., 2021). Another 

significant development is the adaptation of the log-rank test for comparing survival curves under 

complex sampling designs (Smith et al., 2020). 

The Cox proportional hazards model is the most widely used semi-parametric method in 

survival analysis. Recent literature has explored its extensions and adaptations. A notable area of 

research includes the development of time-varying covariate models to handle non-proportional 

hazards, as well as the incorporation of high-dimensional data (Liang et al., 2022). Moreover, Bayesian 

semi-parametric approaches have been proposed to provide more robust parameter estimates and 

account for model uncertainty (Yu & Zeng, 2021). 

Weibull models are favoured for their parametric flexibility, accommodating various hazard 

shapes. Recent studies have applied Weibull smoothing to improve survival predictions, particularly 

in biomedical research. Innovations include the use of spline functions to smooth Weibull estimates, 

offering better adaptability to data with irregular hazard functions (Chen et al., 2021). Another trend 

is the combination of Weibull models with machine learning techniques to enhance predictive accuracy 

and interpretability (Kim & Lee, 2020). 

Fuzzy logic offers a unique approach to handling uncertainty and imprecision in survival data. 

Recent applications of fuzzy methods in survival analysis include the development of fuzzy survival 

models that incorporate linguistic variables and expert knowledge (Hajialiasghari et al., 2021). These 
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models have shown promise in medical decision-making, where precise data may not always be 

available. Additionally, the integration of fuzzy clustering with survival analysis has been explored to 

identify subgroups with distinct survival patterns (Zadeh & Ahmadi, 2022). 

Bootstrapping techniques provide a powerful tool for assessing the reliability of survival 

estimates. Recent research has focused on enhancing bootstrap methods to handle censored data more 

effectively. For example, advancements in weighted bootstrap techniques have been made to improve 

the estimation of confidence intervals in complex survival models (Efron et al., 2021). Furthermore, 

the application of bootstrapping in validating predictive models has been widely explored, ensuring 

robust performance in various contexts (Davison & Hinkley, 2020). The field of survival analysis 

continues to evolve with the integration of advanced statistical methods and computational techniques. 

Non-parametric, semi-parametric, Weibull smoothing, fuzzy methods, and bootstrapping each 

contribute uniquely to the analysis of survival data, addressing different challenges and improving the 

robustness and accuracy of survival estimates. Ongoing research and development in these areas 

promise to further enhance the capabilities of survival analysis in various scientific and practical 

applications. 

 

MATERIALS AND METHODS 

Diabetic retinopathy patient (Vision level improvement is event). The data set were collected 

from EYDOX hospital private limited, Chennai. Data set contains 91 observations with 12 covariates 

in follow up period during six years between 2016 to 2022.The covariates are ID, Age, Gender, Marital 

Status, start time, end time, status, comorbidities, treatment, eyes, Vision levels and glass. Start time 

is when subject started to the treatment and end time is subject stop the treatment or withdraw from 

the treatment. Status consider to vision levels (low, medium, high). Comorbidities: Diabetics, 

Hypertension, Renal status, Cardio, TB, cholesterol. Treatment levels: 1 tablet, 2 tablets and injection 

and 3 tablet, injection and surgery. Glass: suggested or not. The author consider only 84 patients and 

remaining observations are eliminated because it contains missing values.  48 cases attained event of 

interest and the remaining are censored. In this study, attaining Improvement of vision level considered 

as event and not attained improvement and withdrawn from the study were considered as censored. 

1. Survival Statistical Methods  

Statistical methods like Nonparametric, Semiparametric and Parametric models are applied to many 

survival data.  

 

1.1 Kaplan-Meier survival estimate 

 The Kaplan-Meier (KM) method is a non-parametric method used to estimate the survival 

probability from observed survival times (Kaplan and Meier, 1958). 

The Kaplan-Meier estimator is given by: 

                                               �̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑡𝑖≤𝑡                                                       (1.1) 

Variance of the Survivorship is obtained using Greenwood’s formula [1926]  

𝑉𝑎𝑟 ̂ (�̂�(𝑡)) =  (�̂�(𝑡))
2

∑
𝑑𝑖

𝑛𝑖(𝑛𝑖 − 𝑑𝑖)
𝑡𝑖≤𝑡

                                   (1.2) 

1.2 The Nelson-Aalen Estimator  

Nelson Aalen estimator is also Non-Parametric. It doesn’t work with distributions. This method 

like KM is used to estimate data with censored one. The Nelson-Aalen estimator is presented below 

�̂�(𝑡𝑖) =  ∏ 𝑒

−𝑑𝑗

𝑛𝑗

𝑖

𝑗=1

                                           (1.3)                                           

The KM estimator is an approximation of Nelson-Aalen estimator. When 𝑑𝑗 is small relative to 𝑛𝑗 , 

which it will except at the longest survival time. The Nelson-Aalen estimator of survival function will 

always be greater the KM estimator at any given time. 

 

2. Weibull Smoothing: 
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Rossa and Zielinski proposed a local smoothing of the Kaplan Meier Estimator based on an 

approximation by means of the piecewise Weibull survival function 

𝑆𝑊𝑒𝑖(𝑥; 𝛽, 𝛾) = exp (− 𝛽𝑥𝛾), 𝛽, 𝛾 > 0, 𝑥 > 0                         (2.1)  

Let us denote x1, x2, … , xN the jump points of KM, and P1, P2, … , PN the values of the KM at these jump 

points, 

     𝑃𝑖 = �̂�(𝑥𝑖),      𝑖 = 1,2, … , 𝑁  

Let us define    𝑃𝑖 =
𝑃𝑖−1+𝑃𝑖

2
  ,       𝑖 = 1,2, … , 𝑁 . For i = N we define PN =

PN

2
  if the last observation 

is censored and PN = PN  otherwise. For i = 0 we put P0 = 1. 

Determine the values of βi and γi from the following equations. For i = 1,2, … N, we have 

𝑆𝑤𝑒𝑖 (𝑥𝑖; �̂�𝑖, 𝛾𝑖) = 𝑃𝑖 

𝑆𝑤𝑒𝑖(𝑥𝑖+1; �̂�𝑖, 𝛾𝑖) = 𝑃𝑖+1 

Now the smoothed estimator becomes 

𝑆𝑋(𝑥) = 𝑆𝑤𝑒𝑖(𝑥𝑖; �̂�𝑖, 𝛾𝑖)    𝑓𝑜𝑟  𝑥 ∈ (𝑥𝑖, 𝑥𝑖+1)                       (2.2) 

The above equations (Non Linear) are solved to get the required beta and gamma parameters, That 

represents the scale and shape parameters of Weibull distributions respectively. Therefore for a fixed 

i = 1,2, … , N we have the equations; 

{
𝑒−�̂�𝑖𝑥𝑖

�̂�𝑖
= 𝑃𝑖

𝑒−�̂�𝑖𝑥𝑖+1
�̂�𝑖

= 𝑃𝑖+1

    (2.3) 

Taking log on both sides in the equations  we get 

{
�̂�𝑖𝑥𝑖

�̂�𝑖
= − 𝑙𝑛 𝑃𝑖

�̂�𝑖𝑥𝑖+1
�̂�𝑖

= − 𝑙𝑛 𝑃𝑖+1

        (2.4)    

Again taking logarithms on both sides we obtain 

{
𝑙𝑛 �̂�𝑖 + 𝛾𝑖 𝑙𝑛 𝑥𝑖 = ln (−𝑙𝑛 𝑃𝑖)

𝑙𝑛 �̂�𝑖 + 𝛾𝑖 𝑙𝑛 𝑥𝑖+1 = ln (−𝑙𝑛 𝑃𝑖+1)
(2.5) 

Subtracting the above equations  

∴   𝛾𝑖 =
𝑙𝑛(− 𝑙𝑛 𝑃𝑖+1) − 𝑙𝑛(− 𝑙𝑛 𝑃𝑖)

(𝑙𝑛 𝑥𝑖+1 − 𝑙𝑛 𝑥𝑖)
 (2.6) 

From equations  we also have 

         𝑙𝑛 �̂�𝑖 = 𝑙𝑛(− 𝑙𝑛 𝑃𝑖) − 𝛾
𝑖

𝑙𝑛 𝑥𝑖 (2.7)  

The last expression can be written as 

𝑙𝑛(− 𝑙𝑛 𝑃𝑖) = 𝛾
𝑖

𝑙𝑛 𝑥𝑖 + 𝑙𝑛 �̂�𝑖  (2.8)                                                    

3.1 The Weibull plot 

 

Let us assume the coordinate system (u, v) such that  

𝑢𝑖 = 𝑙𝑛 𝑥𝑖    and    𝑣𝑖 = 𝑙𝑛(− 𝑙𝑛 𝑃𝑖) (2.9) 

Now we can write the equation in the form 

𝑣𝑖 = 𝛾𝑖𝑢𝑖 + �̂�𝑖 Where   �̂�𝑖 = 𝑙𝑛 �̂�𝑖. 

Thus the estimates γ̂i and b̂i can also be expressed as follows 

 

𝛾𝑖 =
𝑣𝑖+1−𝑣𝑖

𝑢𝑖+1−𝑢𝑖
           and       �̂�𝑖 = 𝑣𝑖 − 𝛾𝑖𝑢𝑖       (2.10) 

Censoring times can change coordinates on the Weibull plot. Estimates of parameters depends on the 

length of time T. So, source of Uncertainty occurs. The Problem of estimation reduces to linear fuzzy 

regression analysis. 

 

3. Bootstrapping 

First application of bootstrap was made in the context of survival analysis (Efran,1981). Let 
(𝑋1, 𝐷1), (𝑋𝑛, 𝐷𝑛) be identically independently distributed vectors, X and D are independent. 
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Bootstrap estimate of the variance of the Kaplan-Meier estimator at a point suggested by Efran as 

follows: Given the sample (𝑈1, 𝛿1), . . . , (𝑈𝑛, 𝛿𝑛) where 𝑈𝑖= min(𝑋𝑖, 𝐷𝑖) and 

 𝛿𝑖={
1,      𝑖𝑓        𝑈𝑖 = 𝑋𝑖 (𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
0,           𝑖𝑓        𝑈𝑖 = 𝐷𝑖(𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)

     (3.1) 

Take a bootstrap sample (giving probability 1/n to each element of the previous sample): 
(𝑈1

∗, 𝛿1
∗), …, (𝑈𝑛

∗ , 𝛿𝑛
∗)  

Efron shows that this plane is equivalent to resampling 𝑋1
∗,…, 𝑋𝑛

∗  from 𝑋1 , …, 𝑋𝑛 and 𝐷1
∗,…, 𝐷𝑛

∗  from 

𝐷1 , …, 𝐷𝑛 

𝑈𝑖
∗=min(𝑋𝑖

∗, 𝐷𝑖
∗) and  𝛿𝑖

∗={
1,      𝑖𝑓       𝑈𝑖

∗ = 𝑋𝑖
∗  

0,     𝑖𝑓       𝑈𝑖
∗ = 𝐷𝑖

∗                      (3.2) 

We compute the Kaplan-Meier estimator for the bootstrap sample, �̂�𝑋
∗ (𝑡) and define the bootstrap 

estimator of the variance of �̂�𝑋(𝑡), which we may indicate �̂�𝐵 as the standard deviation of �̂�𝑋
∗ (𝑡).  After 

B bootstrap samples, standard deviation of the corresponding Kaplan-Meier estimators at the point t is 

computed. This is useful to find Standard Error and Confidence limits for the bootstrap survival 

function estimator. 

 

4. Semi-parametric method 

The Cox proportional-hazards model (Cox, 1972) is essentially a regression model commonly 

used statistical method in medical research for investigating the association between the survival time 

of patients and one or more predictor variables.  

The Cox model is expressed by the hazard function denoted by h(t). Briefly, the hazard function can 

be interpreted as the risk of event at time t. It can be estimated as follow: 

ℎ(𝑡, 𝑋) = ℎ0(𝑡)𝑒∑ 𝛽𝑖𝑋𝑖
𝑝
1            (4.1) 

where, 

• t represents the survival time 

• h(t) is the hazard function determined by a set of p covariates (𝑋1, 𝑋2, … . , 𝑋𝑃) 

• The coefficients (𝛽1, 𝛽2, … . , 𝛽𝑝) measure the impact (i.e., the effect size) of covariates. 

• The term ℎ0(𝑡) is called the baseline hazard. It corresponds to the value of the hazard if all the 𝑋𝑖 are 

equal to zero (the quantity exp(0) equals 1). 

 

4.1 Estimation of parameter and its Standard Error 

 Cox (1972) proposed “partial likelihood function” that depends only on the parameter of 

interest and the resulting parameter estimators from the partial likelihood function would have the 

same distributional properties as full maximum likelihood estimators 

The partial log-likelihood function is then 

 𝐿𝐿(𝛽) = 𝐿𝑝(𝛽) 

        = ∑ (𝛽1𝑧1𝑖 + 𝛽2𝑧2𝑖 +  … + 𝛽𝑝𝑧𝑝𝑖
𝑘
𝑖=1 ) −  ∑ log [∑ exp (𝛽1𝑧1𝑙 + 𝛽2𝑧2𝑙 +  … +𝑙𝜖R(𝑡(𝑖))

𝑘
𝑖=1

𝛽𝑝𝑧𝑝𝑙)]       (4.2)  

 Standard errors of the estimates of  𝛽𝑖’s can be estimated as (𝐼(𝛽))
−1

. The estimator of the variance 

of the estimated coefficient is the inverse of      

                                                                   𝐼(𝛽) = −
𝜕2𝐿𝑝(𝛽)

𝜕𝛽2
               (4.3)     

4.2 Confidence Interval and significance of the covariate 

The 100(1-𝛼) percent confidence interval for 𝛽𝑖 is 𝛽�̂� ±  𝑍𝛼/2(estimated SE of 𝛽�̂�).  A 100(1-𝛼) 

percent confidence interval for relative risk can be obtained by using the confidence interval for 𝛽. Let 

(𝛽1𝐿,   𝛽1𝑈) be the 100(1-𝛼) percent confidence interval for 𝛽1; a 100(1-𝛼) percent confidence interval 

for relative risk is (exp(𝛽1𝐿 ),   exp(𝛽1𝑈 )). Hazard assumption may be met in many situations, it is not 

reasonable in others.  

• Significance of the covariate is tested by Wald statistic 
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𝑧 =  
�̂�

𝑆𝐸(�̂� )̂
        (4.4) 

5. Parametric Models 

The estimator of the coefficients in parametric model is obtained by log-likelihood function  

                  𝐿(𝛽) = ∑ 𝑐𝑖
𝑛
𝑖=1 𝑧𝑖 −  𝑒  𝑧𝑖                                       (5.1)                  

where ,  𝑧𝑖=  𝑦𝑖-𝑥𝑖
′𝛽,  

 𝑦𝑖=ln( 𝑡𝑖) 

𝑥𝑖
′ = (𝑥𝑖0, 𝑥𝑖1, … . , 𝑥𝑖𝑝) and 𝑥𝑖0=1 

The Likelihood equations are obtained by differentiating the log-likelihood function with respect to 

the unknown parameters and setting the expressions equal to zero. Here also, the inverse of the 

observed information matrix provides the estimators of the variances. 

Bootstrapping Confidence Intervals 

The distribution of 𝜃(𝑏)or 𝜃 are generated using all the B bootstrap samples. Also, 𝑐𝛼

2
 and 𝑐1−

𝛼

2
 are 

the 
𝛼

2
 and 1- 

𝛼

2
 quantiles of the 𝜃(𝑏)or 𝜃 distribution respectively. 

Percentile Method 

The Percentile confidence interval is derived based on the distribution of 𝜃(𝑏) as ⌈𝑐𝛼

2
 , 𝑐1−

𝛼

2
⌉ 

 

RESULTS AND DISCUSSION: 

Table 1: Comparison of Kaplan-Meier and Bootstrapping survival probability for DEP data 

Time BSSP 2.50% 97.50% BLCI KM 2.50% 97.50% KLCI 

2 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 

3 0.9875 0.9524 1.0000 0.0476 0.9880 0.9648 1.0000 0.0352 

6 0.9886 0.9634 1.0000 0.0366 0.9880 0.9648 1.0000 0.0352 

12 0.9748 0.9397 1.0000 0.0603 0.9758 0.9431 1.0000 0.0569 

14 0.9637 0.9252 1.0000 0.0748 0.9636 0.9239 1.0000 0.0761 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

135 0.7777 0.6744 0.8622 0.1878 0.7764 0.6876 0.8767 0.1891 

136 0.7754 0.6785 0.8701 0.1916 0.7764 0.6876 0.8767 0.1891 

141 0.7617 0.6548 0.8514 0.1966 0.7609 0.6696 0.8646 0.1950 

141 0.7659 0.6667 0.8538 0.1871 0.7609 0.6696 0.8646 0.1950 

144 0.7462 0.6456 0.8390 0.1934 0.7450 0.6514 0.8521 0.2007 

147 0.7287 0.6322 0.8317 0.1995 0.7292 0.6334 0.8394 0.2059 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

511 0.5507 0.4225 0.6717 0.2492 0.5459 0.4338 0.6871 0.2533 

564 0.5286 0.3971 0.6485 0.2514 0.5257 0.4129 0.6693 0.2564 

607 0.5020 0.3767 0.6267 0.2500 0.5055 0.3923 0.6513 0.2590 

612 0.5036 0.3819 0.6344 0.2525 0.5055 0.3923 0.6513 0.2590 

615 0.4805 0.3468 0.6087 0.2619 0.4844 0.371 0.6326 0.2616 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

1526 0.1783 0.0638 0.3121 0.2483 0.1824 0.0904 0.3680 0.2776 

1578 0.1467 0.0401 0.2662 0.2261 0.1459 0.0638 0.3338 0.2700 

1579 0.1139 0.0000 0.2291 0.2291 0.1094 0.0402 0.2982 0.2580 

1586 0.0737 0.0000 0.1673 0.1673 0.0730 0.0202 0.2631 0.2428 

1754 0.0410 0.0000 0.1185 0.1185 0.0365 0.0055 0.2411 0.2355 

2136 0.0599 0.0256 0.1349 0.1093 0.0365 0.0055 0.2411 0.2355 
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In the above table, we presented survival Probabilities of Kaplan-Meier and Bootstrap survival 

estimate. Kaplan-Meier estimates gives survival probabilities for Event observations only. On the other 

hand, Bootstrap survival estimates gives value for censored and uncensored cases. 

The median survival time of KM and Bootstrap is 615 days. There are small changes in both methods. 

From the above table, it is observed that survival probabilities were observed for the observations lies 

between two event observations in Bootstrap method, but KM gives same probabilities for the 

observations lies between two event observations. 

 
Figure 1. Comparison of KM and Bootstrap with confidence intervals for DEP data 

Above Figure 1 indicates, when compared to KM survival curve, Bootstrap Survival Curve is smoother 

and no jumps. 

Table 2: Comparison of Nelson-Aalen and KM Bootstrapping survival probability for DEP 

data 

Time BSSP 2.50% 97.50% BLCI Nelson-Aalen 2.50% 97.50% NALCI 

2 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 

3 0.9875 0.9524 1.0000 0.0476 0.9880 0.9650 1.0000 0.0350 

6 0.9886 0.9634 1.0000 0.0366 0.9880 0.9650 1.0000 0.0350 

12 0.9748 0.9397 1.0000 0.0603 0.9759 0.9435 1.0000 0.0565 

14 0.9637 0.9252 1.0000 0.0748 0.9638 0.9244 1.0000 0.0756 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

135 0.7777 0.6744 0.8622 0.1878 0.7779 0.6895 0.8776 0.1880 

136 0.7754 0.6785 0.8701 0.1916 0.7779 0.6895 0.8776 0.1880 

141 0.7617 0.6548 0.8514 0.1966 0.7625 0.6717 0.8656 0.1938 

141 0.7659 0.6667 0.8538 0.1871 0.7625 0.6717 0.8656 0.1938 

144 0.7462 0.6456 0.8390 0.1934 0.7468 0.6537 0.8532 0.1995 

147 0.7287 0.6322 0.8317 0.1995 0.7311 0.6358 0.8405 0.2047 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

511 0.5507 0.4225 0.6717 0.2492 0.5497 0.4380 0.6898 0.2517 

564 0.5286 0.3971 0.6485 0.2514 0.5297 0.4174 0.6723 0.2549 

607 0.5020 0.3767 0.6267 0.2500 0.5097 0.3970 0.6545 0.2575 

612 0.5036 0.3819 0.6344 0.2525 0.5097 0.3970 0.6545 0.2575 

615 0.4805 0.3468 0.6087 0.2619 0.4889 0.3758 0.6360 0.2601 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

1526 0.1783 0.0638 0.3121 0.2483 0.1940 0.1000 0.3760 0.2760 

1578 0.1467 0.0401 0.2662 0.2261 0.1588 0.0736 0.3428 0.2692 
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Time BSSP 2.50% 97.50% BLCI Nelson-Aalen 2.50% 97.50% NALCI 

1579 0.1139 0.0000 0.2291 0.2291 0.1237 0.0497 0.3079 0.2582 

1586 0.0737 0.0000 0.1673 0.1673 0.0886 0.0289 0.2721 0.2433 

1754 0.0410 0.0000 0.1185 0.1185 0.0537 0.0121 0.2384 0.2263 

2136 0.0599 0.0256 0.1349 0.1093 0.0537 0.0121 0.2384 0.2263 

In the above table, we presented survival Probabilities of Nelson-Aalen and with KM Bootstrap. 

Nelson-Aalen estimates gives Survival Probabilities for Event observations only. On the other hand, 

Bootstrap survival estimates give value for censored and uncensored cases. 

The median survival time of NA and Bootstrap is 615 days. There are small changes in both methods. 

From the above table, it is observed that survival probabilities were observed for the observations lies 

between two event observations in Bootstrap method, but NA gives same probabilities for the 

observations lies between two event observations.  

The above Table 2 and 3 shows, when time increases; length of the confidence intervals for the 

bootstrap is smaller than compared to other traditional methods. 

 
Figure 2. Comparison of Nelson-Aalen with KM Bootstrap with confidence intervals for DEP 

data 

Above Figure 2 indicates, when compared to NA survival curve, Bootstrap Survival Curve is smoother 

and no jumps. 

Table 3:  Survival estimates of Kaplan-Meier and Nelson-Aalen with Bootstrapping survival 

probability for DEP data 

Time KM Bootstrap Kaplan-Meier Nelson-Aalen 

2 1.0000 1.0000 1.0000 

3 0.9875 0.9880 0.9880 

6 0.9886 0.9880 0.9880 

12 0.9748 0.9758 0.9759 

14 0.9637 0.9636 0.9638 

⋮ ⋮ ⋮ ⋮ 

135 0.7777 0.7764 0.7779 

136 0.7754 0.7764 0.7779 

141 0.7617 0.7609 0.7625 

141 0.7659 0.7609 0.7625 

144 0.7462 0.7450 0.7468 

147 0.7287 0.7292 0.7311 

⋮ ⋮ ⋮ ⋮ 
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Time KM Bootstrap Kaplan-Meier Nelson-Aalen 

511 0.5507 0.5459 0.5497 

564 0.5286 0.5257 0.5297 

607 0.5020 0.5055 0.5097 

612 0.5036 0.5055 0.5097 

615 0.4805 0.4844 0.4889 

⋮ ⋮ ⋮ ⋮ 

1578 0.1467 0.1459 0.1588 

1579 0.1139 0.1094 0.1237 

1586 0.0737 0.0730 0.0886 

1754 0.0410 0.0365 0.0537 

2136 0.0599 0.0365 0.0537 

It is observed that, the median survival time exists at 615 days in all the methods. KM Bootstrap 

survival estimates give Survival Probabilities for censored and uncensored cases for each time. 

 
Figure 3.  Survival estimates of KM and Nelson-Aalen with KM Bootstrap with confidence 

intervals for DEP data 

Above Figure 3 indicates, when compared to KM and NA survival curve, Bootstrap Survival Curve is 

smoother and no jumps. Mean width of the confidence interval obtained from KM Bootstrap (0.1912) 

is less than mean width of the confidence interval obtained from KM (0.2020518) and NA 

(0.2007675). 

 

Model Assumption checking 

The hazard ratio for the two groups should remain proportional under the proportional hazard 

assumption, which implies that the hazard ratio will remain constant over time. Scaled Schoenfeld 

residuals are statistical tests and graphical representations that verify the proportional hazard 

assumption. It verifies the assumption of proportional hazard. 

Table 4:  Score Tests and p-Values for Proportional Hazards on each of the Covariates as Well 

as the Global Test for the Model Fit to the DEP Data 
 Chisq p-value 

Gender 1.497 0.221 

Treatment 0.591 0.442 

Comorbidities 6.821 0.033 

Age 5.686 0.017 

Eyes 2.073 0.355 

GLOBAL 15.223 0.033 
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The results in Table 4 indicate that the covariates Gender, Treatment and Eyes satisfies the proportional 

hazard assumption at 5% level of significance but the covariates Comorbidities and Age satisfies the 

PH assumption at 1% level of significance. Scatter Plot (Figure 4) of the scaled Schoenfeld residuals 

also reiterates the results of the score tests. 

 
Figure 4. Plotting scaled Schoenfeld residuals against survival time to examine the 

proportional hazards assumption for DEP patients 

A solid line and two dotted lines accompany each other in Figure 4, to represent the results graphically. 

The smoothing spline fit to the plot is shown by the solid line, while the dotted lines show ± 2 standard 

error bands around the fit. The Proportional Hazard assumption was not violated in the DEP data. So, 

the DEP data can be analysed using Cox regression. 
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Figure 5. Forest plot of estimates of hazard ratios for the final model fit to the DEP data 

Forest plots, as illustrated in Figure 5 for DEP data, are a convenient approach to display and 

graphically compare the results of multivariate Cox models. 

Table 5: Estimated Summary for Main Effects Proportional Hazards Model and Bootstrap 

technique containing covariates for the DEP Patients 

 Cox PH Bootstrap 

Variables coefficient 
p-

value 
coefficient p-value 

Gender Male 0.4875 0.2550 0.4875 0.3360 

Treatment 

Injection 
-0.7969 0.2900 

-0.7969 0.5080 

comDiab. With 1 -0.4611 0.2190 -0.4611 0.3620 

comDiab. With 2 -0.6428 0.2630 -0.6428 0.1990 

Age -0.0128 0.3250 -0.0128 0.4480 

Eyes LR 0.4128 0.3400 0.4128 0.3560 

Eyes R 0.3412 0.3760 0.3412 0.3190 

From the above table, it is understood that the parameter estimates are obtained same values using Cox 

PH and Bootstrap technique. With out using Standard error, the bootstrap estimates are estimated. All 

the covariates are not statistically significant because p-values are >0.05. In this study, the number of 

female patients is less. 

Table 6: The AIC/BIC estimated value for Exponential, Weibull, Log-logistic and Lognormal 

in DEP data. 

Models AIC BIC 

Exponential 689.6824 708.5361 

Weibull 690.6685 711.8789 

Loglogistic 695.6228 717.5549 

Log-Normal 696.3445 717.5549 

Fitted various Parametric survival models for DEP data and compared the performance of these 

Parametric models. To select the best Parametric model for DEP data, AIC/BIC values are estimated. 



88                                                      Vol.19, No.02(II), July-December :  2024 

The AIC/BIC estimated value for Exponential, Weibull, Log-Logistic and Lognormal are shown in 

the Table 6. The least AIC and BIC value gives the best fit model. From the above table, it is observed 

that Exponential model is suitable for DEP data. 

Table 7: Estimated Exponential AFT model and Bootstrap fitted for DEP data 

 AFT Bootstrap 

Variables Value p-value Estimate p-value 

GenderM -0.1914 0.6400 -0.1914 0.7060 

treatmentInjection 0.8263 0.2700 0.8263 0.5380 

comDiab with 1. 0.3636 0.3100 0.3636 0.4060 

comDiab with 2. 0.6705 0.2400 0.6705 0.1880 

Age 0.0086 0.5000 0.0086 0.7070 

eyesLR -0.4340 0.3100 -0.4340 0.2930 

eyesR -0.3585 0.3500 -0.3585 0.2600 

From the above table, The AFT Exponential model and Bootstrap technique shows that all the 

covariates are not statistically significant because p values are >0.05. Both Semi-Parametric and 

Parametric models confirm that all the variables in the study are not statistically significant related to 

survival time. Both estimates give the same values for estimates and p-values. 

None of the variables show statistically significant associations with the hazard in this analysis, as all 

p-values are greater than 0.05. This suggests that the factors studied (Gender, Treatment, Diabetics 

comorbidities, Eyes condition, and Age) do not significantly influence the survival in this dataset. 

Weibull Model fit for the Eye data is confirmed by the following diagram 

 
Figure 6. Model fit for Weibull Distribution of Eye Data 

From the Figure, it is seen that estimated parameters fit well for the Weibull Structure, as the 

corresponding plot follows a near linear structure. Table, when the data contains more censoring, the 

estimated value of parameters differ. But for the eye data which contains 36 censored observations, it 

is observed that there is change in the values of the parameter. Censoring plays important role in 

estimating parameters. So, it is observed that this Parameter estimation in Semi-Parametric model leads 

this survival data into fuzzy model. 

Table 8: List of Transformed Values: Coordinates and for the Weibull locally smoothed 

estimator for Eye Data 

Time KM kbar uk vk gamma beta 

3 0.9880 0.9940 1.0986 -5.1090 0.7999 0.0025 

12 0.9758 0.9819 2.4849 -4.0001 3.3754 0.0000 

14 0.9636 0.9697 2.6391 -3.4798 0.7742 0.0040 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

74 0.8210 0.8279 4.3041 -1.6668 0.2501 0.0644 

125 0.7916 0.8063 4.8283 -1.5357 1.5892 0.0001 

135 0.7764 0.7840 4.9053 -1.4134 1.7997 0.0000 



89                                                      Vol.19, No.02(II), July-December :  2024 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

659 0.4634 0.4739 6.4907 -0.2920 0.8406 0.0032 

707 0.4423 0.4528 6.5610 -0.2329 0.8712 0.0026 

756 0.4212 0.4318 6.6280 -0.1745 1.8508 0.0000 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

1579 0.1094 0.1277 7.3645 0.7219 4.2280 0.0000 

1586 0.0730 0.0912 7.3690 0.8733 1.9203 0.0000 

1754 0.0365 0.0547 7.4697 1.0667 NA NA 

 Above Table, shows that the Weibull locally smoothed estimator and the Coordinates for Eye data 

contains censoring observations. As a result, the censoring variables create complexity, which can be 

a source of fuzziness. This suggests the researcher to approach survival model in the form of fuzzy 

linear regression with 𝑈𝑘  being crisp and dependent variables  𝑉𝑘 being fuzzy. This fuzzy concept used 

to estimate survival function. From the above table the slope (β) values of all interval Eye data for 

nearly zero. 

Uncertainty observed from Semi-Parametric and Parametric models when removing some 

censored observations leads the researcher to apply fuzzy linear regression for Eye data. The fuzzy 

linear coefficients will be considered to have symmetric triangular membership functions for the sake 

of simplicity. 

First converted the crisp numbers into symmetric fuzzy numbers after introduced small random 

spreads. Spreads were calculated using random method and standard deviation from the data. In Eye 

data, both methods give same interpretation. For defuzzification, the centroid method was applied to 

fuzzy number to convert into crisp number. 

  
Figure 7. Comparison of KM and Weibull Smoothing and Comparison of KM, Weibull 

Smoothing and Fuzzy (Fit Model) for Eye data 

The plot comparing the KM and Weibull smoothed values is provided for Eye data in Figure 

7. Also plot comparing the KM, Weibull smoothed values and the Fuzzy Survival Model is provided 

for Eye data. Weibull Smoothing and the fuzzy Model present varying survival probabilities, instead 

of a flat constant one provided by KM Method for Eye data. Also, it is seen that the estimated 

probabilities using Weibull smoothing and the fuzzy Model fall in between the confidence limits of 

the KM Estimator. 



90                                                      Vol.19, No.02(II), July-December :  2024 

 
Figure 8. Comparison of KM, Nelson Aalen, Bootstrap, Weibull Smoothing and Fuzzy for Eye 

data 

This plot provides, Kaplan-Meier curve (green) provides an empirical estimate of the survival 

function without assuming any specific distribution. The Nelson-Aalen estimator (magenta) offers a 

cumulative hazard function which can be used to derive the survival function. The Weibull smoothing 

(black dashed line) fits the survival data using a parametric Weibull model. This model assumes a 

specific form for the hazard function and can provide a smoother estimate. The bootstrap method (Cyan 

line) is used to provide a sense of the variability in the survival estimates, which helps in understanding 

the stability of the observed patterns. Confidence Intervals, (red and blue dotted lines) provide a range 

within which the true survival function is expected to lie with 95% confidence. These intervals indicate 

the uncertainty around the survival estimates. 

The Kaplan-Meier and Nelson-Aalen estimators are both non-parametric methods and provide 

similar patterns, though the Nelson-Aalen might appear slightly smoother. The Weibull model offers 

a different perspective by assuming a parametric form, which can be more informative if the underlying 

assumptions hold true. Bootstrapping highlights the variability in the estimates, and the results show 

that the observed survival curve is quite stable with narrow confidence intervals. 

 

CONCLUSIONS: 

This study examines the effectiveness of bootstrapping on the confidence intervals of various 

parameter of interest while handling survival data. Applying Nonparametric methods KM and NA to 

survival data, it is observed that Nelson-Aalen survival estimator is always greater than or equal to 

KM estimator. Kaplan-Meier and Nelson-Aalen estimates gives survival probabilities for event 

observations only, but Bootstrap survival estimates gives value for both censored and uncensored 

cases. Survival probabilities were observed for the observations lies between two event observations 

in Bootstrap method, but KM gives same probabilities for the observations lies between two event 

observations. when time increases; length of the confidence intervals for the bootstrap is smaller than 

compared to other traditional methods. Bootstrap Survival Curve is Smoother and no jumps for 

probability of survival. Mostly Bootstrapping performs better when sample size was increased. 

Increasing of Bootstrap samples gives only small variation. The parameter estimates obtained from 

Cox PH and Bootstrap technique gives same value. Without using Standard error, the bootstrap 

estimates are estimated. Survival methods like Kaplan-Meier and Weibull Smoothing with the Fuzzy 

logic approach applied to the data set. Estimate probabilities using Weibull smoothing and the fuzzy 

Model fall in between the confidence limits of the KM Estimator. Both Semi-Parametric and 

Parametric models give the same values for estimates and p-values. Combining these methods finally 

all the curves in between the confidence interval of KM and can often provide a more comprehensive 

analysis, leveraging the strengths of each approach. Each method’s integration with bootstrapping 

provides a more comprehensive analysis by quantifying the uncertainty and variability of survival 
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estimates. This combination is especially powerful in survival analysis, where censored data and small 

sample sizes often pose significant challenges. The choice of method should be guided by the data 

characteristics and the specific goals of the analysis, with bootstrapping serving as a valuable tool for 

enhancing the reliability of the results. 
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